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The effects of bond randomness on the phase diagram and critical behavior of the square lattice ferromag-
netic Blume-Capel model are discussed. The system is studied in both the pure and disordered versions by the
same efficient two-stage Wang-Landau method for many values of the crystal field, restricted here in the
second-order phase-transition regime of the pure model. For the random-bond version several disorder
strengths are considered. We present phase diagram points of both pure and random versions and for a
particular disorder strength we locate the emergence of the enhancement of ferromagnetic order observed in an
earlier study in the ex-first-order regime. The critical properties of the pure model are contrasted and compared
to those of the random model. Accepting, for the weak random version, the assumption of the double-
logarithmic scenario for the specific heat we attempt to estimate the range of universality between the pure and
random-bond models. The behavior of the strong disorder regime is also discussed and a rather complex and
yet not fully understood behavior is observed. It is pointed out that this complexity is related to the ground-

state structure of the random-bond version.
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I. INTRODUCTION

The effect of quenched randomness on the equilibrium
and dynamic properties of macroscopic systems is a subject
of great theoretical and practical interest. It is well known
that quenched bond randomness may produce drastic
changes on phase transitions depending on the type of the
transition [1-6]. Thus, symmetry-breaking first-order transi-
tions are converted to second-order phase transitions by in-
finitesimal bond randomness for spatial dimensionality d=2
[3,4] and by bond randomness beyond a threshold strength in
d>?2 [4], as indicated by general arguments [5] and in some
cases by rigorous mathematical work [3]. In particular, this
rounding effect of first-order transitions has now been rigor-
ously established in a unified way in low dimensions
(d=2) including a large variety of types of randomness in
classical and quantum spin systems [7].

Historically, the effects of disorder on phase transitions
have been studied in two extreme cases, i.e., in the limits of
weak and strong (near the percolation point) disorder. The
first important conjecture, known today as the Harris crite-
rion [ 1], relates the value of the specific-heat exponent « in a
continuous transition with the expected effects of uncorre-
lated weak disorder in ferromagnets. According to the Harris
criterion, for continuous phase transitions with a negative
exponent «, the introduction of weak randomness is expected
to be an irrelevant field and the disordered system to remain
in the same universality class. On the other hand, the weakly
disordered system is expected to be in a different universality
class in the case of a pure system having a positive exponent
a. Pure systems with a zero specific-heat exponent (a=0)
are marginal cases of Harris criterion (since the criterion
does not give any information) and their study, upon the
introduction of disorder, has been of particular interest. The
paradigmatic model of the marginal case is, of course, the
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general random two-dimensional (2D) Ising model (random
site, random bond, and bond diluted) and this model has
been extensively investigated and debated [8-24]. Several
recent studies, both analytical (renormalization group and
conformal field theories) and numerical [mainly Monte Carlo
(MC) simulations] devoted to this model, have provided very
strong evidence in favor of the so-called logarithmic correc-
tions’ scenario. According to this, the effect of infinitesimal
disorder gives rise to a marginal irrelevance of randomness
and besides logarithmic corrections, the critical exponents
maintain their 2D Ising values. In particular, the specific heat
is expected to slowly diverge with a double-logarithmic de-
pendence [11-14]. Here, we should mention that there is not
full agreement in the literature and a different scenario pre-
dicts a negative specific heat exponent « leading to a satu-
rating behavior [16], with a corresponding correlation length
exponent v=2/d [25].

In general, a unitary and rigorous physical description of
critical phenomena in disordered systems still lacks and cer-
tainly, lacking such a description, the study of further models
for which there is a general agreement in the behavior of the
corresponding pure cases is very important. Historically,
such a suitable candidate for testing the above predictions,
that has been also quite extensively studied, is the general 2D
g state Potts model [17,26-30]. This model includes the
Ising model (g=2), cases of a pure system having continuous
transitions with a positive exponent a (¢=3,4) and also the
large g cases (g >4) for which one could observe and try to
classify the above-mentioned softening of first-order transi-
tions in 2D models. Another similarly interesting candidate,
not yet as much studied in the random-bond version, is the
2D Blume-Capel (BC) model [31,32]. We may note here that
most of the existing literature on the BC model with random-
ness concerns randomness applied to the crystal field and/or
spin glass exchange interactions [33-36]. As it is well
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known, the pure version of the BC model undergoes an
Ising-like continuous phase transition to an ordered ferro-
magnetic phase as the temperature is lowered for crystal-field
couplings less than a tricritical value and a first-order transi-
tion for larger values of the crystal-field coupling. Therefore,
this model provides also the opportunity to study two differ-
ent and very interesting topics of the above described effects
of disorder in critical phenomena, namely, the double-
logarithmic scenario for the specific heat in the regime where
the 2D BC model is in the same universality class with the
2D random-bond Ising model and also the softening of the
transition in the first-order regime. Recently the present au-
thors [37] have considered this model and provided strong
numerical evidence clarifying two of the above mentioned
effects induced in 2D systems by bond randomness. By
implementing a two-stage Wang-Landau (WL) approach
[37-43], we presented essentially exact information on the
2D BC model under quenched bond randomness. In this in-
vestigation, we found dramatically different critical behav-
iors of the second-order phase transitions emerging from the
first- and second-order regimes of the pure BC model and
since, these second-order transitions were found to have dif-
ferent critical exponents, our study indicated an interesting
strong violation of universality [37]. Namely, different sets
of critical exponents on two segments of the same critical
line appeared to describe the two regimes: still-second-order
and ex-first-order.

In this paper, we extend our earlier work [37], by imple-
menting essentially the same two-stage WL approach (Sec.
1) and try to give a more complete picture by concentrating
in the weak (still-second-order) regime and simulate the
model for several disorder strengths and many values of the
crystal-field coupling. The above statement means that, ef-
fectively we will restrict our study to moderate values of the
crystal field and moderate values of the disorder, intending to
observe the frontier between the weak- and the strong-
disorder universality classes from the disappearance of the
expected 2D random Ising universality class behavior. Thus,
in Sec. III we will produce phase diagram points for the
random-bond model but also for the pure model, reporting
for the pure case a comparison with existing estimates in the
literature. More generally, in carrying out this project we
have also considered the pure 2D BC model for several val-
ues of the crystal field, in the second-order regime, observing
its finite-size scaling (FSS) behavior. Sec. IV presents such a
comparative study between random and pure models con-
cerning the behavior of all thermodynamic parameters used
in the traditional FSS analysis of MC data. This study en-
ables us to observe some peculiarities of the pure model, due
to the onset of tricriticality, and compare them with the cor-
responding behavior of the random model. Furthermore, we
try to focus, understand and shed light to the extent of uni-
versality of the random-bond 2D BC model with the corre-
sponding random-bond Ising model, for which the scenario
of logarithmic corrections seems to be the strongest option in
the current literature [24]. The prediction of the range of
such universality is far from trivial and the two regimes
(weak and strong) have much dissimilarities which are also
reflected in the ground-state structure, as further discussed
below. The attempt to estimate the range of the above-
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mentioned universality is accomplished by the idea which
assumes the truth of the double-logarithmic scenario for the
specific heat in a suitable restricted range. This is presented
in Sec. V together with some further crucial observations
concerning the behavior of the strong disorder regime, i.e.,
the regime where the Ising class universality does not apply
and the system has a rather complex and yet not understood
behavior. We have also indicated in this section, the in-
creased difficulty of analysis, innate to the physical problem,
under strong randomness. Our conclusions are summarized
in Sec. VL.

II. DEFINITION OF THE MODELS AND THE TWO-
STAGE WANG-LANDAU APPROACH

A. Pure and random-bond Blume-Capel models

The (pure) BC model [31,32] is defined by the Hamil-
tonian

Hp=—JE sisj+AE siz, (1)
Cij) i

where the spin variables s; take on the values —1,0, or +1,
(ij) indicates summation over all nearest-neighbor pairs of
sites, and J>0 is the ferromagnetic exchange interaction.
The parameter A is known as the crystal-field coupling and
to fix the temperature scale we set J=1 and kz=1. As it is
well known, this model has been analyzed, besides the origi-
nal mean-field theory [31,32], by a variety of approximations
and numerical approaches. These include the real space
renormalization group, MC simulations, and MC
renormalization-group calculations [44], e-expansion renor-
malization groups [45], high- and low-temperature series cal-
culations [46], a phenomenological FSS analysis using a
strip geometry [47,48], and, finally, a recent two-parameter
WL sampling in rather small lattices of linear sizes L=16
[49]. As mentioned already in the introduction the phase dia-
gram of the model consists of a segment of continuous Ising-
like transitions at high temperatures and low values of the
crystal field which ends at a tricritical point, where it is
joined with a second segment of first-order transitions be-
tween (A,,T,) and (A=2, T=0).

The model given by Eq. (1) is studied here on the square
lattice and will be referred to as the pure BC model. How-
ever, our main focus, on the other hand, is the case with bond
disorder given by the bimodal distribution

1
P(Jij) = 5[5(11',‘_]1) + 5(Jij—]2)];

le, JI>J2>O, rzﬁ, (2)
2 J

so that r reflects the strength of the bond randomness. The
present study concerns only the case of 50%/50% weak/
strong bonds, as indicated above by the bimodal distribution
in Eq. (2), this practice follows the traditional bond disorder
implementation commonly used in the case of the square
lattice Ising model [8]. Other choices of bond randomness
have been commented in Sec. V. The resulting quenched
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disordered (random-bond) version of the Hamiltonian de-
fined in Eq. (1) reads now as

H:—E]ijs,-sj+AE siz. (3)
(ij) i

A first comparative study between the two versions (pure
and random) of the 2D BC model has been already presented
in our earlier paper [37] for two values of the crystal-field
coupling corresponding to the second-order (A=1) and first-
order (A=1.975) regimes of the pure model where for the
random version the disorder strength r=0.75/1.25=0.6 was
chosen in both cases. In the next Sections our study on the 2d
BC model is extended to several values of the crystal field
and disorder (listed in the table of Sec. III). Details of our
simulations are summarized in the next Section together with

an up to date brief sketch of our entropic scheme.

B. Outline of our implementation of the Wang-Landau
approach

In the last few years we have used an entropic sampling
implementation of the WL algorithm [38,39] to study some
simple [40,41], but also some more complex systems
[8,42,43]. One basic ingredient of this implementation is a
suitable restriction of the energy subspace for the implemen-
tation of the WL algorithm. This was originally termed as the
critical minimum energy subspace (CrMES) restriction
[40,41] and it can be carried out in many alternative ways,
the simplest being that of observing the finite-size behavior
of the tails of the energy probability density function (e-pdf)
of the system [41]. Complications that may arise in random
systems can be easily accounted for by various simple modi-
fications that take into account possible oscillations in the
e-pdf and expected sample-to-sample fluctuations of indi-
vidual disorder realizations. In our recent papers [8,37,43],
we have presented details of various sophisticated routes for
the identification of the appropriate energy subspace (E|,E,)
for the entropic sampling of each random realization. In es-
timating the appropriate subspace from a chosen pseudocriti-
cal temperature one should be careful to account for the shift
behavior of other important pseudocritical temperatures and
extend the subspace appropriately from both low- and high-
energy sides in order to achieve an accurate estimation of all
finite-size anomalies. Of course, taking the union of the cor-
responding subspaces insures accuracy for the temperature
region of all studied pseudocritical temperatures.

The up to date version of our implementation uses a com-
bination of several stages of the WL process. First, we carry
out a starting (or preliminary) multirange (multi-R) stage, in
a very wide energy subspace. This preliminary stage is per-
formed up to a certain level of the WL random walk. The
WL refinement is G(E) — f* G(E), where G(E) is the density
of states (DOS) and we follow the usual modification factor
adjustment fj+1=\e‘"fj and f;=e. The preliminary stage may
consist of the levels: j=1,...,j=18 and to improve accuracy
the process may be repeated several times. However, in re-
peating the preliminary process and in order to be efficient,
we use only the levels j=13,...,18 after the first attempt,
using as starting DOS the one obtained in the first random
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walk at the level j=12. From our experience, this practice is
almost equivalent of simulating the same number of indepen-
dent WL random walks. Also in our recent studies, we have
found out that is much more efficient and accurate to loosen
up the originally applied very strict flatness criteria [40,41].
Thus, a variable flatness process starting at the first levels
with a very loose flatness criteria and assuming at the level
j=18 the original strict flatness criteria is now days used.
After the above described preliminary multi-R stage, in the
wide energy subspace, one can proceed in a safe identifica-
tion of the appropriate energy subspace using one or more
alternatives outlined in Refs. [40,41]. In random systems,
where one needs to simulate many disorder realizations, it is
also possible and advisable to avoid the identification of the
appropriate energy subspace separately for each disorder re-
alization by extrapolating from smaller lattices and/or by
prediction from preliminary runs on small numbers of disor-
der realizations. In any case, the appropriate subspaces
should be defined with sufficient tolerances. In our imple-
mentation we use such advance information to proceed in the
next stages of the entropic sampling.

The process continues in two further stages (two-stage
process), using now mainly high iteration levels, where the
modification factor is very close to unity and there is not any
significant violation of the detailed balance condition during
the WL process. These two stages are suitable for the accu-
mulation of histogram data (for instance energy-
magnetization histograms), which can be used for an accu-
rate entropic calculation of nonthermal thermodynamic
parameters, such us the order parameter and its susceptibility
[41]. In the first (high-level) stage, we follow again a re-
peated several times (typically ~5-10) multi-R WL ap-
proach, carried out now only in the restricted energy sub-
space. The WL levels may be now chosen as j=18,19,20
and as an appropriate starting DOS for the corresponding
starting level the average DOS of the preliminary stage at the
starting level may be used. Finally, the second (high-level)
stage is applied in the refinement WL levels j=j;,...,j;+3
(typically j;=21), where we usually test both an one-range
(one-R) or a multi-R approach with large energy intervals. In
the case of the one-R approach we have found very conve-
nient and in most cases more accurate to follow the Belar-
dinelli and Pereyra [50] adjustment of the WL modification
factor according to the rule In f~¢!. Finally, it should be
also noted that by applying in our scheme a separate accu-
mulation of histogram data in the starting multi-R stage (in
the wide energy subspace) offers the opportunity to inspect
the behavior of all basic thermodynamic functions in an also
wide temperature range and not only in the neighborhood of
the finite-size anomalies. The approximation outside the
dominant energy subspace is not of the same accuracy with
that of the restricted dominant energy subspace but is good
enough for the observation of the general behavior and pro-
vides also a route of inspecting the degree of approximation.

The above described numerical approach was used to es-
timate the properties of a large number of 100 bond disorder
realizations, for lattice sizes L=20-100 for all crystal fields
and disorder strengths used in this paper, with the exception
of the case A=1.5 and r=0.5/1.5, where 500 disorder real-
izations were simulated for lattice sizes L=20-140. For ref-
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erence and contrast, the pure system’s properties were also
obtained by the same implementation, simulating in each
case at least 30 independent runs. We close this outline of
our numerical scheme with some comments concerning sta-
tistical errors and disorder averaging. Even for the larger
lattice size studied here (L=100) and depending on the ther-
modynamic parameter, the statistical errors of the WL
method were found to be of reasonable magnitude and in
some cases to be of the order of the symbol sizes or even
smaller. This was true for both the pure version and the in-
dividual random-bond realizations. However, since the na-
ture of the present study is qualitative, not aiming to an ac-
curate exponent estimation, the WL errors will not be
presented in our figure illustrations. We also note that, for the
random-bond version mainly the averages over the disorder
realizations, denoted as [...],,, will be considered in the text
and their finite-size anomalies, denoted as [...];,, will be
used in our FSS attempts. Due to very large sample-to-
sample fluctuations, mean values of individual maxima
([..."],,) have not been used in this study except for illustra-
tive purposes, as in the case A=1.5, r=0.5/1.5 presented in
our last Section.

III. PHASE DIAGRAMS: PURE AND RANDOM-BOND 2D
BLUME-CAPEL MODELS

This Section presents, as mentioned in the introduction,
phase diagram points for the pure and random-bond models
and in the case of the pure model compare the corresponding
phase diagram points with the existing estimates in the lit-
erature. This gives also the opportunity to observe the reli-
ability of our numerical approach. Following the practice of
our earlier paper [37], we estimate phase diagram points by
fitting our data to the expected power-law shift behavior T’
=T.+bL™""" of several pseudocritical temperatures.

The traditionally used specific heat and magnetic suscep-
tibility peaks, as well as, the peaks corresponding to the fol-
lowing logarithmic derivatives of the powers n=1,2,4 of the
order parameter with respect to the inverse temperature K
=1/T [51],

3 In(M") _ (M"H)
oK (M"y

(H), (4)

and the peak corresponding to the absolute order-parameter
derivative

a(|M|)

2 = (MIH) - M), (5)

will be implemented for a simultaneous fitting attempt.
Such simultaneous fitting attempts are presented in Fig. 1.
In particular Fig. 1(a) presents the shift behavior for the
random-bond 2D BC model in the weak disorder case r
=0.9/1.1 at the value A=1.5 and Fig. 1(b) illustrates the
simultaneous fitting attempted for the pure model at A
=1.95, further discussed at the end of Sec. IV B. As noted
already, the data fitted for the random version of the model
are only those of the pseudocritical temperatures of the peaks
of the averaged over disorder thermodynamic parameters, as
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FIG. 1. (a) Simultaneous fitting of the six pseudocritical tem-
perature defined in the text for the random-bond version for A
=1.5 and r=0.9/1.1. The fitting range is L=20-100. (b) The same
as above simultaneous fitting of the six pseudocritical temperatures
now for the pure model at A=1.95. The solid line shows our esti-
mate of the critical temperature 7,=0.659 (with the dotted lines
indicating its errors barriers) and the dashed line the estimate T,
=0.650 given in Ref. [48].

indicated in the figure, where the asterisk denotes the peak of
the averaged over disorder parameter [...], . The alternative
route of using averages of individual sample parameters
gives almost identical estimates. However, in cases of strong
lack of self-averaging, very large sample-to-sample fluctua-
tions may be present. For simplicity, in all fitting attempts,
the whole range L=20-100 has been used. Following this
practice for the pure and random version of the 2D BC sev-
eral phase diagram points were produced. Figure 2 shows the
resulting phase diagrams using our phase diagram points for
the pure 2D BC model and its random-bond version for the
disorder strength r=0.75/1.25=0.6. The tricritical point
shown is taken from the estimate given by Beale (A,,T))
=[1.9655(10),0.610(5)] [48]. For the disorder strength r
=0.75/1.25 the points of the phase diagram were chosen
with the intension to be able to approximately locate the
emergence of the enhancement of ferromagnetic order ob-
served in our earlier study [37] in the ex-first-order regime at
A=1.975, where we found a considerable increase in the
critical temperature by ~9%. A microscopic explanation of
this phenomenon, based on the preference s;= = 1 states to
the strong-coupling connectivity sites has been given in Ref.
[37] (see also Ref. [52]), as a microsegregation process, due
to quenched bond randomness, that evolves continuously
within the ferromagnetic and paramagnetic phases. The inset
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FIG. 2. Phase diagrams of the pure 2D BC model and its ran-
dom version at the disorder strength r=0.75/1.25. The inset illus-
trates the crossing of the phase boundaries including an approxi-
mate estimate of the crossing point.

of Fig. 2 shows that phase diagram of the random version
crosses the diagram of the pure model at approximately the
crossing point (A,,ss» Teross) =[1.66(2),1.02(3)], well before
the tricritical point. The approximation of this point was ob-
tained by interpolation using the four points of the phase
diagram in the range A=1.0-1.9.

Table I summarizes the phase diagram points obtained in
this paper, by the above described traditional FFS method for
both the pure and random version of the 2D BC model for
disorder strengths r=0.9/1.1, r=0.75/1.25, and r=0.6/1.4,
together with corresponding phase diagram points given by
Beale [48] for the pure model. Note that, in Silva er al. [49]
one can find an analogous table for the pure 2D BC model
including the phase diagram points given by Beale [48] and
the points produced in their two-parametric WL sampling

TABLE I. Transition temperatures of the pure and random-bond
2D BC model obtained in this paper. Second column from Ref.
[48], third and last entries of third and fifth columns from Ref. [37].

Al kgT!J

Pure Random

Ref. [48] r=0.9/1.1 r=0.75/125 r=0.6/14

0 1.695  1.693(3) 1.674(2)
0.5 1.567  1.564(3) 1.547(2)
1 1.398  1.398(2) 1.381(1)
1.2 1.277(3)
1.4 1.184(3)
1.5 1.150  1.151(1) 1.149(1) 1.144(2) 1.131(2)
1.6 1.084(1) 1.071(3)
1.7 1.005(1)
1.75 0.958(1) 0.960(2)
1.8 0.908(1) 0.917(3)
1.9 0.769(1)  0.774(2) 0.786(4)
1.95 0.650  0.659(2) 0.702(3)
1.975 0.574(2) 0.626(2)

PHYSICAL REVIEW E 81, 041113 (2010)

[49]. It can be seen that there is an excellent coincidence of
our points with those of Beale [48]. The points of Beale [48]
are based on the very accurate phenomenological FSS
scheme using a strip geometry [47], whereas our points are
obtained via the present simultaneous FSS analysis, based on
lattices with linear sizes L=20-100. The points of Silva et
al. [49] are based in much smaller lattices of the two-
parameter WL sampling (linear sizes L=16). However, in
the case A=1.95 our phase diagram point does not agree,
within errors, with that of Beale and for this reason our es-
timation with a rather generous error bars (shown also on the
panel) has been illustrated in Fig. 1(b). The rest of Table I
contains our estimates for the random-bond versions. One
may note from this table that for small values of A for in-
stance A=1.5 the corresponding critical temperatures de-
crease as the disorder becomes stronger (compare the three
cases of disorder: r=0.9/1.1, r=0.75/1.25, and r=0.6/1.4 at
this value of the crystal field). On the other hand, for A
=1.9 the trend is reversed as can be seen by comparing the
corresponding three cases of disorder. Apparently this is a
kind of reflection of the phenomenon of the enhancement of
ferromagnetic order which appears to influence the geometry
of the critical surface for the 2D random-bond BC model.

IV. PHASE TRANSITIONS OF THE PURE AND
RANDOM-BOND 2D BLUME-CAPEL MODELS

A. Strong violation of universality: The ex-first-order regime

As pointed out in the introduction, in our recent investi-
gation of the 2d random-bond BC model [37] we found dra-
matically different critical behaviors of the second-order
phase transitions emerging from the first- and second-order
regimes of the pure model. Namely, different sets of critical
exponents on two segments of the same critical line appeared
to describe the two regimes: the still-second-order and ex-
first-order regimes. The study in Ref. [37] was carried out for
two values of the crystal-field coupling corresponding to the
second-order (A=1) and first-order (A=1.975) regimes of
the pure model and for the random version the disorder
strength r=0.75/1.25 was chosen in both cases. The strong
violation of universality observed appeared to be the result of
the softening of the first-order transition due to bond ran-
domness. Specifically, it was concluded that the new strong-
disorder universality class is well described by a correlation
length exponent in the range v=1.30(6)—1.35(5), and expo-
nent ratios y/v and B/v very close to the Ising values 1.75
and 0.125, respectively [37]. The above weak universality
[16,53,54] seems to be valid between the Ising-like continu-
ous transitions of the random-bond 2D BC model for small
values of A (A=1.0 in Ref. [37]) and continuous transitions
belonging to the strong-disorder universality class.

Therefore, the strong-disorder universality class may be
characterized by the above distinct value of the correlation
length exponent and a strong saturation of the specific heat.
Qualitatively this saturating behavior is quite instructive and
for illustrative reasons is reproduced here in Fig. 3. This
figure contrasts, at A=1.975, the specific heat’s finite-size
behavior of the pure 2D BC model (first-order regime) and
two disordered cases corresponding to disorder strengths r
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FIG. 3. Behavior of the random-bond 2D BC model at A
=1.975 from Ref. [37]. Illustration of the divergence of the specific
heat of the pure model (first-order regime) and the clear saturation
of the specific heat for the random-bond (open symbols) 2D BC
model for two disorder strengths in a log-log scale.

=0.85/1.15 and r=0.75/1.25. The saturation of the specific
heat is very clear in both cases of the disorder strength.

It is of interest to point out here that these findings for the
strong-disorder universality class appear to be fully compat-
ible with the classification of phase transitions in disordered
systems proposed recently by Wu [55]. According to this
classification the strong-disorder transition is expected to be
inhomogeneous and percolative with an expected exponent
of the order v=1.34 [56]. Furthermore, it has been suggested
to us by Wu [57], that the strong lack of self-averaging of
this transition stems from the above properties. This viola-
tion of self-averaging, together with the strong finite-size ef-
fects, makes the systematic MC approach of the strong-
disorder regime very demanding, if not impractical. On the
other hand, the weak regime (or Ising universality regime)
suffers a much weaker lack of self-averaging, by at least a
factor of ~12 [37], and a smooth behavior is observed at
moderate lattice sizes. Thus, aiming here to observe, even
approximately, the extent of the involved universality classes
we carried out our study at moderate values of the crystal
field and disorder, and found a behavior quite convincing
from which the frontier of the strong universality class can
be estimated by observing the disappearance of the expected
2D random Ising universality class.

B. Pure and random-bond 2D BC model: Range of
universality with the 2D Ising model

Let us now proceed with the analysis of our numerical
data for the disorder strengths and crystal fields given in
Table I and observe and contrast their FSS behavior with that
of the pure model.

Starting this comparative study with the FSS of the spe-
cific heat maxima (using for the random-bond version at the
strength r=0.75/1.25 the corresponding quantity averaged
over disorder, i.e., [C]; ), we present in Fig. 4 fitting at-
tempts for the same range of A for the pure model [Fig. 4(a)]
and the random-bond version [Fig. 4(b)]. As indicated by the
scales in the x axis and the functions in the corresponding
panels, the expected Ising logarithmic divergence has been
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FIG. 4. FSS of the specific heat maxima for the pure and
random-bond 2D BC model at the same values of A. (a) Pure
model: illustration of linear fittings assuming the expected Ising
logarithmic divergence. (b) Random model: illustration of linear
fittings assuming a double-logarithmic divergence. Note the steady
fall of the double-logarithmic amplitude C,.

assumed for the pure model C*=C;+C, In L, whereas the
double-logarithmic divergence [C], =C;+C,In(InL) has
been assumed for the random version. Although, it is very
difficult to irrefutably distinguish between a double-
logarithmic divergence and a very weak power-law diver-
gence, the theoretically well-grounded double-logarithmic
scenario applies very well [37] and this fact can be observed
also now for more values of A in Fig. 4(b). There are some
further features one can observe from Fig. 4. First, for the
pure model, and in the range A>1.9, we observe a sudden
change in the behavior of the specific heat peaks as we ap-
proach the tricritical point which is apparently a strong cross-
over effect. For the random version and the same values of A
no such strong effects are noticeable and most probably the
general softening effects of bond randomness extends also to
the expected crossover phenomena between the two different
universality classes of the random 2d BC model. From Fig.
4(b) the slopes of the double-logarithmic fittings appear to
obey a rather sensible decreasing tendency from which we
try in the next Section to locate the frontier of strong-
disorder universality class.

A second interesting comparison follows now in Fig. 5,
where again Fig. 5(a) presents the FSS of the susceptibility
maxima for the pure model, whereas Fig. 5(b) corresponds to
the random-bond version at r=0.75/1.25. The influence of
the exceptionally large fluctuations in the order parameter of
the pure model, as we approach the tricritical point, is now
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FIG. 5. FSS behavior of the susceptibility maxima for the pure
and random-bond 2D BC model at the same values of A. (a) Pure
model: simultaneous fitting to a simple power law for the first six
values of A and a separate fitting close to the tricritical point for
A=1.95. (b) Random model: simultaneous fitting of the averaged
susceptibility peaks for all values of A. Note the better behavior for
the random model and the improved estimation of the exponent
ratio y/ v.

reflected in the effective exponent ratio v/ v, estimated by the
simple power law x*~L”". These large fluctuations are a
known peculiarity of the pure model near tricriticality [48].
The effective value of the exponent is now closer to the
expected value at the tricritical point y/v=1.5 [48] than to
the value of the Ising universality class y/v=1.75. For this
reason a separate power-law fitting has been applied for the
value A=1.95 in Fig. 5(a). Note here that in Fig. 5(a) the
simultaneous fitting is applied to the first six values of A
=0-1.9, whereas in Fig. 5(b) all values of A=0-1.95 are
used. However, even so, the comparison of the two panels of
Fig. 5, points out the much better limiting behavior of the
random version toward the expected Ising value y/v=1.75.
Therefore, we may convincingly suggest that, for moderate
values of crystal field and disorder, the Ising universality
scenario (with possible logarithmic corrections) is well ob-
tained in the disordered case.

Figures 6 and 7 illustrate further alternative routes, used
commonly in traditional FSS analysis, that provide clear evi-
dence to the above suggestion namely that the weak disorder
version belong to the 2D Ising class for suitable moderate
values of disorder and crystal-field coupling.

Noteworthy is the fact that the estimation of the critical
exponents via the traditional FSS, such as that shown in Figs.
5-7 for the random version, yields estimates very close to the
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FIG. 6. (a) FSS analysis ~L!"” of the three logarithmic deriva-
tives (n=1,2,4) of the order parameter with respect to temperature
for a particular crystal field A=0.5 and disorder strength r
=0.75/1.25. (b) Traditional FSS analysis ~L™#" of the order pa-
rameter at the estimated critical temperature for the same value of
crystal field and disorder strength, as in panel (a).

expected values, i.e., the exponents of the 2D Ising model.
On the other hand, as pointed also earlier, for the pure model,
as we approach the tricritical point (A=1.95) the effective
exponents remind more those expected at the tricritical point
than those of the 2D Ising model. This is particularly true for
the correlation length’s exponent estimated in Fig. 1(b) by
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T T T T T T
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FIG. 7. Simultaneous fitting to a simple power law ~LUI=8/7of
the averaged peaks corresponding to the absolute order-parameter
derivative for three values of and disorder strength r=0.6. The fit-
ting provides an estimate of the exponent (1— )/ v and as indicated
in the panel an alternative estimate for the exponent ratio 8/ v, by
assuming v=1.
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FIG. 8. An approximate estimation of the tricritical value of the
crystal field by fitting the decreasing logarithmic amplitudes C, of
the pure model at suitable values of the crystal-field coupling to a
suitable power law shown in the figure.

the simultaneous fitting of the six pseudocritical tempera-
tures. As can be seem from this figure the estimate for the
exponent v, in the case A=1.95, is closer to the expected
tricritical value 40/77=0.519--- [48], than to the 2D Ising
value v=1.

V. MULTICRITICAL POINTS AND THE STRONG
DISORDER REGIME

A. Estimation of multicritical points

From Fig. 4(a) one can observe the expected Ising loga-
rithmic divergence of the specific-heat maxima. Avoiding the
value A=1.95, which suffers from strong crossover effects,
we attempted to estimate the tricritical value of the crystal
field by fitting the decreasing logarithmic amplitudes C, to a
suitable power law, as shown in Fig. 8. This may appear a
naive or questionable idea, since the behavior of specific heat
data is the Achilles’ heel of FSS analysis. Yet, Fig. 8 shows
that besides the large fluctuations (errors) in logarithmic am-
plitudes C,, one could approximately estimate the tricritical
crystal field A,~1.96(1), as shown in the panel of Fig. 8.

From Fig. 4(b) we observe again that, the specific heat
maxima, corresponding now to the random-bond model at
the disorder strength r=0.75/1.25, are better-matched to the
double-logarithmic divergence than the corresponding
specific-heat maxima of the pure model to a simple logarith-
mic divergence. Therefore, it appears realistic to try to obtain
the multicritical point (more precisely the value of the crystal
field A,; where we expect the emergence of strong-disorder
regime at a given disorder strength), where the 2D random-
bond (BC) Ising universality class meets the strong-disorder
universality class, by fitting the decreasing double-
logarithmic amplitudes to a similar power law.

Figure 9 presents now these fittings and also the estimated
multicritical values of the crystal field A, for the three dis-
order strengths considered in this paper. The statistical errors
of the corresponding double-logarithmic amplitudes C, are
seen to be quite smaller, compared to the corresponding am-
plitudes of the pure model, and the estimated values of the
values of the multicritical field, shown in the panel of Fig. 9,
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FIG. 9. Estimation of multicritical values of the crystal field,
where the 2D random-bond (BC) Ising universality class meets the
strong-disorder universality class. The decreasing double-
logarithmic amplitudes C, of the random version have been fitted to
a power law shown and the estimates for the three disorder
strengths are shown in the panel.

appear more convincing. From their general trend we ob-
serve that as we increase the disorder strength the frontier of
the strong-disorder universality class moves to lower values
of the crystal field, namely: [r=0.9/1.1, A,;=1.963(8)], [r
=0.75/1.25, A,=1955(5)], and [r=0.6/14, A,
=1.879(12)]. This behavior seems sensible and in our opin-
ion reflects the competition between the ferromagnetic ran-
dom interactions with the crystal field, giving a kind of de-
stabilization of the usual Ising-like ferromagnetic order. A
similar ground-state reflection of this competition is a
ground-state structure of unsaturated ferromagnetic ground
states discussed in our recent paper [58]. Conversely, as dis-
order strength is decreased, A,,; approaches A,, as expected.

B. Strong disorder regime: The case A=1.5, r=0.5/1.5
and general observations

As pointed out earlier, the strong lack of self-averaging,
together with possible strong finite-size effects, make the
MC approach to the strong-disorder regime a very difficult
task. The self-averaging properties along the two segments
(ex-first-order and still-second-order) of the critical line were
observed and discussed in Ref. [37].

It was shown in this paper that the usual finite-size mea-
sure [59] of relative variance Ry=Vy/ [X]iv, where Vy
=[X*],,~[X]2, (and X=yx" is the susceptibility maxima), ex-
hibits lack of self-averaging in both cases of marginal
second-order transition and the transition in the strong-
disorder or ex-first-order regime. In particular, it was shown
[37] that the case studied (A=1.975) of the ex-first-order
segment gives a much larger effect when compared with the
still-second-order regime at A=1 and the same disorder
strength r=0.75/1.25 by a factor of ~12. Therefore, phase
diagram points very close to the frontier of the strong-
disorder regime may be the worst cases to study, because,
besides the very strong lack of self-averaging one may also
expect large finite-size and crossover effects. However, such
cases are elucidatory not only for observing the intrinsic dif-
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FIG. 10. Finite-size behavior for the case A=1.5 and r
=0.5/1.5. (a) Behavior of the averaged pseudocritical temperatures,
corresponding to individual maxima, with an illustration of the huge
sample-to-sample fluctuations. (b) Behavior of the maxima of the
averaged specific-heat curves ([C]},) and the average of individual
maxima ([C*],,) with their large sample-to-sample fluctuations.

ficulties but also for giving us the opportunity to reflect on
possible links with basic properties of the system as for in-
stance the ground-state structure.

Thus, Fig. 10 illustrates two important characteristics of
the case A=1.5 and r=0.5/1.5. In particular, Fig. 10(a)
shows the huge sample-to-sample fluctuations in all the
pseudocritical temperatures used in this paper. The simula-
tion here was extended to larger lattices (L=20-140) and the
number of realizations studied was 500, to be compared with
100 realizations studied in previous Sections (weak regime).
Besides the enormous fluctuations, the number of 500 real-
izations looks quite insufficient and strong finite-size effects,
reflected as expected in the shift behavior of the system,
produce a completely unsettled behavior. Figure 10(b) illus-
trates an unusual deviating behavior between the finite-size
behavior of the maxima of the averaged specific-heat curves
([CT;,) and the finite-size behavior of the average of indi-
vidual maxima ([C*],,), which as shown suffer large sample-
to-sample fluctuations. The behavior here resembles in many
aspects the well known and still challenging specific heat
behavior of the three-dimensional random-field Ising model
[42].

However, a very clear tendency of [C];, for a saturating
behavior is observed in Fig. 10(b) and we may speculate that
this saturating behavior is the correct asymptotic behavior
for both maxima shown in Fig. 10(b), although the behavior
of [C*],, will settle down only in very large lattice sizes,
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FIG. 11. Ground-state behavior of the order parameter of the 2D
random-bond BC model versus r for various values of A averaged
over 250 disorder realizations.

when the influence of the strong finite-size effects on the
individual maxima will diminish.

The above illustrations open the possibility that the case
A=1.5 and r=0.5/1.5 is very close to the frontier of the
strong-universality class. This is in accordance with the trend
observed in the previous Section and can be further sup-
ported by reproducing here some aspects of the ground-state
structure of the 2D random-bond BC model. From Fig. 11,
reproduced here from Ref. [58], one can see that approxi-
mately at this point (A=1.5, r=0.5/1.5), the system departs
from the ferromagnetic ground state and an unsaturated
ground state is produced, which is further enhanced with
vacant sites (s;=0) as we increase the disorder strength. In
the presence of bond randomness the competition between
the ferromagnetic interactions with the crystal-field results in
a destabilization of the ferromagnetic ground state. Depend-
ing on the realization, weak clusters exist in 7=0 and their
points are frozen in the s;=0 state. This is an interesting
subject, which is presently under further consideration in
both 2D and three dimension (3D) by the present authors.
The behavior illustrated in Fig. 10 appears now as a conse-
quence of the onset of the unsaturated ground state at (A
=1.5, r=0.5/1.5) which is thus related with the critical be-
havior of the 2D random-bond BC model. The presented
calculation of the ground states has be carried out in polyno-
mially bounded computing time by mapping the system into
a network and searching for a minimum cut by using a maxi-
mum flow algorithm (see for instance Ref. [60]) and can be
easily extended to large lattices and also to the 3D BC
random-bond model.

The ground-state structure as observed from Fig. 11, re-
flects some aspects of the complexity of the strong disorder
regime. For moderate disorder strengths and values of the
crystal field, we have large plateaus describing the saturated
ferromagnetic ground state, starting from the limit of the
pure model and extending to the strong disorder regime. The
illustrated characteristic departure from the ferromagnetic
ground state is solely due to the competition between the
random ferromagnetic interactions with the crystal field. This
behavior has been also verified in other random-bond imple-
mentations. In the case of a 25%/75% weak/strong bonds
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implementation much larger plateaus appear, whereas in the
case of a 75%/25% weak/strong bonds implementation much
smaller plateaus appear, as should be expected. The problems
discussed earlier in this section, and in particular the illus-
trated behavior for (A=1.5, r=0.5/1.5), may be expected in
other cases of randomness implementations at the points
where the corresponding systems departs from the saturated
ferromagnetic ground state. The increased difficulty of analy-
sis is intrinsic to the physical problem under strong random-
ness and the strong finite-size effects are due to the presence
of the created vacancies. However, percolation effects do not
enter the problem, since both strong and weak bonds are
nonzero ferromagnetic and do not short the lattice (except in
the extreme strong disorder limit »=0). All bonds on the
lattice are present and reinforce the connectivity. Thus, the
same quantitative results are obtained with other ratios of
strong and weak bonds.

VI. CONCLUSIONS

By carrying out an extensive two-stage Wang-Landau en-
tropic sampling of both the pure and the random-bond 2D
Blume-Capel model we have produced phase diagram points
for several disorder strengths. Also for the pure model we
found an excellent coincidence of our points with those of
Beale [48]. For a particular disorder strength (r=0.75/1.25)
we found that, as a result of the enhancement of ferromag-
netic order, the phase diagram of the random version crosses
that of the pure model at approximately the point
(Arosss Terpss) =[1.66(2),1.02(3)], well before the tricritical
point.

PHYSICAL REVIEW E 81, 041113 (2010)

The critical properties of the pure model were compared
and contrasted to those of the random model and for moder-
ate values of the crystal field and disorder we found that the
Ising universality scenario (with possible logarithmic correc-
tions) is well obtained in the case of the random version.
Furthermore, accepting in this range of couplings the as-
sumption of the double-logarithmic scenario for the specific
heat, we estimated multicritical points, where the 2D
random-bond (BC) Ising universality class meets the strong-
disorder universality class.

The behavior of the strong disorder regime was also criti-
cally discussed. The case A=1.5 and r=0.5/1.5 was exten-
sively studied and based on the observed behavior and on the
ground-state observations we suggested that this case, most
likely, lies on the frontier between the weak- and strong-
disorder universality classes, suffering exceptionally strong
finite-size effects and a strong lack of self-averaging.

In conclusion, the present paper investigated some diffi-
cult and important aspects of the random-bond 2D Blume-
Capel model. It has been pointed out that the behavior of this
system 1is very interesting and in particular the strong-
disorder regime may include many further challenges and
open problems that, at the moment, are not fully understood.
In our opinion, this is a rather complex subject deserving
further research.
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